Simulations of warm tropical conditions with application to middle Pliocene atmospheres
نویسندگان
چکیده
During the early and mid-Pliocene, the period from 5 to 3 million years ago, approximately, the Earth is believed to have been significantly warmer than it is today, but the reasons for the higher temperatures are unclear. This paper explores the impact of recent findings that suggest that, at that time, cold surface waters were absent from the tropical and subtropical oceanic upwelling zones. El Niño was in effect a perennial rather than intermittent phenomenon, and sea surface temperatures in low latitudes were essentially independent of longitude. When these conditions are specified as the lower boundary condition for an atmospheric GCM, we find that the trade winds along the equator, and hence the Walker Circulation, collapse. The low-level stratus clouds in low latitudes diminish greatly, thus reducing the albedo of the Earth. The atmospheric concentration of water vapor increases, and enhanced latent heat release due to stronger evaporation warms up the tropical atmosphere, particularly between 40 S and 20 N. Moreover, teleconnection patterns from the Pacific induce a warming over North America that is enhanced by surface albedo feedback, a process that may have helped to maintain this region ice-free before 3 Ma. The results presented here indicate that the suggested absence of cold surface waters from the tropical and subtropical oceanic upwelling zones could have contributed significantly to the Pliocene warmth.
منابع مشابه
Greatly expanded tropical warm pool and weakened Hadley circulation in the early Pliocene.
The Pliocene warm interval has been difficult to explain. We reconstructed the latitudinal distribution of sea surface temperature around 4 million years ago, during the early Pliocene. Our reconstruction shows that the meridional temperature gradient between the equator and subtropics was greatly reduced, implying a vast poleward expansion of the ocean tropical warm pool. Corroborating evidenc...
متن کاملSimulating Pliocene warmth and a permanent El Niño-like state: The role of cloud albedo
Available evidence suggests that during the early Pliocene (4–5 Ma) the mean east-west sea surface temperature (SST) gradient in the equatorial Pacific Ocean was significantly smaller than today, possibly reaching only 1–2◦C. The meridional SST gradients were also substantially weaker, implying an expanded ocean warm pool in low latitudes. Subsequent global cooling led to the establishment of t...
متن کاملAbrupt Transition to Strong Superrotation Driven by Equatorial Wave Resonance in an Idealized GCM
Persistent superrotation is seen in the atmospheres of other terrestrial bodies (Venus, Titan) but not in that of present Earth, which is distinguished by equatorial easterlies. Nevertheless, superrotation has appeared in numerical simulations of Earth’s atmosphere, from two-layer models to multilevel comprehensive GCMs. Simulations of warm climates that generate enhanced tropical convective va...
متن کاملEl Niño's tropical climate and teleconnections as a blueprint for pre-Ice-Age climates
[1] At 2.7 million years ago the warm equable climates of early and ‘‘middle’’ Pliocene time (used here to mean from 5 to 2.7 Ma) were replaced by recurring ice ages. Most attempts to explain the change appeal either to changes in CO2 in the atmosphere or reduced heat transport by the Atlantic Ocean. The sources of the strongest teleconnections in the current climate, however, lie in the tropic...
متن کاملCoralline red algae from the Lower Pliocene Shagra Formation of Wadi Wizer, Red Sea coast, Egypt: Biofacies analysis, systematics and palaeoenvironmental implications
Coralline red algae are highly abunadant and well diversified in the well exposed carbonate deposits of the Lower Pliocene Shagra Formation at Wadi Wizer, Red Sea coast, Egypt. Lithostratigraphically, the Shagra Formation unconformably overlies the Late Miocene Marsa Alam Formation and underlies the Quaternary deposits. This carbonate facies is dominated by different assemblage of coralline red...
متن کامل